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Effective reinforcement learning hinges on having an appropriate

state representation. But where does this representation come

from? We argue that the brain discovers state representations by

trying to infer the latent causal structure of the task at hand, and

assigning each latent cause to a separate state. In this paper, we

review several implications of this latent cause framework, with a

focus on Pavlovian conditioning. The framework suggests that

conditioning is not the acquisition of associations between cues

and outcomes, but rather the acquisition of associations

between latent causes and observable stimuli. A latent cause

interpretation of conditioning enables us to begin answering

questions that have frustrated classical theories: Why do

extinguished responses sometimes return? Why do stimuli

presented in compound sometimes summate and sometimes

do not? Beyond conditioning, the principles of latent causal

inference may provide a general theory of structure learning

across cognitive domains.
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Introduction
During his travels in Java, the 14th-century merchant

Marco Polo encountered a rhinoceros. Lacking the con-

cept of a rhinoceros, Marco Polo was faced with a dilem-

ma: Is this a strange exemplar of a familiar category

(unicorns), or a fundamentally new category? While ulti-

mately judging it to be a unicorn, he acknowledged that

‘they are not of that description of animals which suffer

themselves to be taken by maidens, as our people sup-

pose, but are quite of a contrary nature’ [1].

Marco Polo’s dilemma is ubiquitous: When confronted

with a surprising observation, one must decide whether to
www.sciencedirect.com 
extend a familiar category to incorporate this unusual

example, or to postulate a novel category. We refer to

the process of parsing experience into groups or delineat-

ing the boundaries of generalization among examples as

structure learning. The idea is that this parsing process

attempts to follow the true causal structure in the world:

Experiences that are all instances of the same cause

should be grouped together and generalized over, while

experiences that are due to different underlying causes

should be separated in our mind. Recent work has begun

to unravel the cognitive and neural mechanisms support-

ing structure learning (see [2,3] for reviews). Our focus

here is on the role of structure in reinforcement learning.

Structure learning is fundamental to reinforcement learn-

ing because these algorithms rely on a representation of

the environment as a set of states, and the nature of the

state representation determines the efficiency and effica-

cy of the learning algorithm. However, the state repre-

sentation is almost never provided to the brain by a

teacher. Instead, the brain must discover an appropriate

(and useful) state representation from its interactions with

the environment. Computational algorithms for state

discovery have been studied in machine learning (e.g.,

[4–6]), but research on how the brain solves this problem

is still in its infancy. We will review progress on one

particular theory of state discovery, which posits that

states are identified with inferred latent causes in the

environment [7��,8–11,12�,13]. This theory connects with

a rich array of ideas in psychology and neuroscience,

ranging from classical conditioning to categorization

and episodic memory [14]. Thus, the principles underly-

ing state discovery in reinforcement learning may func-

tion as a core computational system in the brain.

Latent cause models
As a paradigmatic example of reinforcement learning,

consider a simple Pavlovian conditioning experiment,

in which a cue (e.g., tone) is paired repeatedly with an

outcome (e.g., shock), resulting in the acquisition of a

conditioned response (e.g., freezing). If the cue is then

presented repeatedly without the outcome (extinction),

the conditioned response gradually decreases and returns

to baseline. Classical theories such as the Rescorla–
Wagner model [15] view conditioning as the process of

learning an association between cue and outcome, while

extinction is viewed as unlearning of this association, with

the conditioned response following the strength of the

learned association. However, empirical data show that

the extinguished response can return under a variety of

circumstances (indeed, it is rather difficult to prevent the

response from returning, as will be described below),
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contradicting the assumption that the association was

truly unlearned [16].

The latent cause framework addresses this contradiction

by rethinking the representation underlying Pavlovian

conditioning: Rather than learning about associations

between cues and outcomes, which do not necessarily

conform to the true causal structure of the environment,

an agent learns about associations between ‘causes,’ some

of them unobservable (latent), and observable stimuli

(both cues and outcomes). In other words, the latent

cause model conceptualizes associative learning as a form

of ‘clustering,’ whereby observations are clustered togeth-

er according to their hypothetical latent causes. By posit-

ing that animals infer the existence of different latent

causes during conditioning and extinction, the latent

cause model can explain both why and when the condi-

tioned response survives extinction [8]. The model also

addresses the role of the hippocampus in latent causal

inference, developmental trajectories, and a host of relat-

ed empirical phenomena [8,9].

Formally, the model posits that the animal computes the

posterior distribution over latent causes given the ob-

served sensory data such as cues and outcomes (Figure 1).

This computation is stipulated by Bayes’ rule, which

states that the posterior probability of a set of causes is
Figure 1

P(cause|data) ∝  P(data|cause)P(cause)
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?
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Conditioning as clustering. (Top) The latent cause model asserts that

an animal will infer the latent causes of its observations using Bayes’

rule. The rectangles show the animal’s observations on different trials

of a conditioning experiment, each generated by a single latent cause

(denoted by Z1 and Z2). While only two latent causes appear here, the

model can in principle accommodate an unbounded number. (Bottom)

When presented with an extinction trial, the animal must determine

whether this trial should be assigned to the existing latent cause or to

a new one. In the model, this assignment is probabilistic rather than

binary, and the extinction trial can ultimately be assigned to both the

old and a new latent cause, with different posterior probabilities.
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proportional to the likelihood of the sensory data assum-

ing this causal structure, and the a priori probability of

these causes. In the model, the likelihood is determined

by the similarity between observations attributed to a

single latent cause: the more similar the current observa-

tion is to previous observations attributed to a particular

latent cause, the more likely it is that this latent cause is

active on the current trial.

The prior distribution over latent causes expresses the

agent’s inductive biases about which latent structures are

more or less plausible. Most commonly, the prior

expresses a simplicity bias (cf. [17,18]) favoring latent

structures with a small number of latent causes. Impor-

tantly, since in the real world the number of causes is

often unknown, the prior must be able to accommodate

an unbounded number of them. This combination of

simplicity and flexibility can be formalized using con-

cepts from Bayesian nonparametric statistics [19]. Box 1

provides an overview of several Bayesian nonparametric

priors over latent causes.

While we have so far framed the latent cause model in

terms of learning, the model also provides a framework for

thinking about memory formation. Every time a new

latent cause is inferred, a memory representation must

be formed to store the parameters of the latent cause (e.g.,

the probabilities of each of the observations given that the

cause is active, which are learned from experience).

Memories, according to this view, constitute part of the

agent’s internal model of the world, with the structure of

memories mirroring the inferred latent structure of the

world. Bayesian inference negotiates the tension between

updating existing memories and forming new ones when

new information is encountered [10].

In the remainder of this review, we explore two implica-

tions of this latent cause framework for Pavlovian condi-

tioning. First, we describe the effect of different

extinction procedures on inferences about latent causes,

leading to a surprising prediction that has been recently

confirmed [20]. Second, we describe an extension of the

model in which multiple latent causes can be simulta-

neously active (i.e., jointly generate the observed stimuli),

allowing the model to capture a complex set of behavioral

phenomena in compound conditioning [13].

Understanding the effects of different
extinction procedures
To make the latent cause model concrete, we now describe

its application to Pavlovian conditioning and extinction. In

this paradigm, the sensory data consist of two variables, cue

and outcome. Following our earlier work [8,9], we assume

that on each trial of the experiment, only a single latent

cause can be active (but see below for a relaxation of this

constraint). The model assigns all cue-outcome condition-

ing trials unambiguously to a single cause, but the first
www.sciencedirect.com
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Box 1 Bayesian infinite-capacity (‘nonparametric’) priors over

latent causes

The field of Bayesian nonparametric statistics has furnished

cognitive science with several probability distributions over an

unknown number of latent causes (see [19] for an introduction).

These distributions have two psychologically plausible character-

istics: (1) they can flexibly generate an unbounded number of latent

causes, and (2) the number of generated latent causes tends to be

small, thereby favoring ‘simpler’ structures and more parsimonious

explanations of observed data.

Gershman and colleagues [8,9] used a simple sequential stochastic

process for sampling latent causes, known as the Chinese

restaurant process [56]. This name refers to a culinary metaphor that

can be used to describe the sampling process (Figure 4a): customers

(datapoints or trials) enter the restaurant one at a time, choosing a

table (latent cause) with probability proportional to the number of

other customers already seated at the table. With some probability

proportional to a, a customer may choose a new table. Thus, the

number of latent causes can grow as new data are observed, and the

parameter a controls the rate of this growth. The Chinese restaurant

process has also appeared in many areas of cognitive science,

ranging from categorization [42,44] to visual perception [18] and

reconstructive memory [10].

The Chinese restaurant process generates a single latent cause for

each datapoint. A related stochastic process can generate multiple

latent causes for each datapoint (Figure 4b), and it too can be

described by a culinary metaphor. In the Indian buffet process [57],

customers enter the buffet and sample each dish (latent cause) with

probability proportional to the number of other customers who have

previously sampled the dish. In addition, the nth customer samples a

Poisson(l/n) number of new (untried) dishes. The parameter l plays

the same role as a, controlling how the number of latent causes

grows as more customers enter, and hence the ‘complexity’ of the

model. Soto and colleagues used the Indian buffet process in their

latent-cause model of compound conditioning [13], and it has also

been used in models of perceptual feature learning [58–60].

How can we determine whether these stochastic processes are

good models of human (or animal) priors? One promising approach

is to use recently developed techniques for behaviorally eliciting

samples from the prior. In a setting in which only one latent cause is

relevant for each trial/observation, Austerweil [61�] used the Markov

chain Monte Carlo with People technique [62] to collect samples

from humans’ priors over clusterings of simple visual stimuli (i.e., one

latent cause per observation). This technique uses human judgments

about clusterings to construct a Markov chain whose stationary

distribution is the prior. Austerweil showed that the Chinese

restaurant process is well-matched to elicited samples. A similar

technique could be fruitfully applied to evaluating models with

multiple simultaneous latent causes, like the Indian buffet process.
cue-no outcome extinction trial presents an ambiguous

situation: Is the outcome absent because the true (un-

known) parameters of the ‘conditioning’ cause specify a

probability less than 1 of emitting an outcome, or should

the absence of the outcome be interpreted as evidence of a

new latent cause?

Bayes’ rule balances both the (dis-)similarity between the

extinction trial and the conditioning trials (captured by

the likelihood) and the inductive bias for reusing previ-

ously inferred causes (captured by the prior), to deter-

mine the posterior probability of different explanatory
www.sciencedirect.com 
structures: the probability that all trials have been gener-

ated by a single latent cause, the probability that all

conditioning trials were generated by one cause, and

all extinction trials by another, the probability that each

trial was generated by a different latent cause, and so

forth. In the case of extinction, this means that factors that

reduce the similarity between extinction and acquisition

(e.g., a context change; [8]) make it more likely that

extinction trials will be assigned to a new latent cause.

To the extent that the posterior distribution over latent

causes favors assigning the extinction trial to the old

latent cause, the parameters of that cause will be modified

(memory is updated), whereas to the extent that a new

latent cause is inferred, a new memory will formed to

store its parameters. According to this account, extinction

fails to erase the original conditioning memory because

the large change from conditioning to extinction invokes

memory formation rather than memory updating. Thus, if

we are interested in durably eliminating the conditioned

response, we must thread a needle: new experiences

should be sufficiently different to drive learning (memory

updating), but not so different that they invoke memory

formation.

We tested this idea by designing a gradual extinction
procedure [20] for Pavlovian fear conditioning. Rather

than abruptly shifting from cue-outcome (tone-shock) to

cue-alone trials (standard extinction), we gradually re-

duced the frequency with which cues and outcomes are

paired during extinction (Figure 2a). We compared this

procedure to a standard extinction condition and a gradual
reverse condition, in which cue-outcome pairs occurred on

the same proportion of trials, but gradually increasing in

frequency. In both control conditions, we expected that

large differences between the beginning of extinction and

the end of acquisition would lead to the inference of a

new latent cause, and thus extinction training would not

be effective at modifying the old (conditioning) latent

cause. In contrast, with gradual extinction we hoped to

encourage the animal to assign new observations to the

old latent cause, thereby slowly modifying its parameters

such that activation of the old cause predicted an ever

shrinking probability of a shock.

We tested memory recovery with two assays (in different

groups of rats). In experiment 1, we measured spontaneous
recovery of fear 30 days following the end of extinction

(Figure 1b) [21]. In experiment 2, we measured reinstate-
ment of fear by presenting the shock 24 hours after ex-

tinction and then 24 hours later testing the conditioned

response to the tone (Figure 1c) [22,23]. Spontaneous

recovery and reinstatement tests typically show that the

conditioned response returns after extinction. Indeed,

we found such recovery of the fear memory in both

the standard and gradual reverse conditions. However,

consistent with our predictions, we found no evidence of
Current Opinion in Behavioral Sciences 2015, 5:43–50
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Figure 2
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Varieties of extinction. (a) Three extinction procedures studied in [20]. The conditioned stimulus is a tone, denoted by bars, and the unconditioned

stimulus is a shock. (b) Results of a spontaneous recovery experiment (test 30 days after extinction). (c) Results of a reinstatement experiment

(two shocks without tones 24 hours after extinction, followed by a test 24 hours later). The conditioning and extinction procedures were identical

across the two experiments. Both tests consisted of four presentations of the tone with no outcomes. Plotted are the differences between the

conditioned response (freezing) at test and the response in the last four trials of extinction. Positive values indicate recovery of fear. Error bars

represent standard error of the mean. Asterisks indicate effects significantly greater than zero ( p < 0.05).
recovery of fear in the gradual extinction condition

(Figure 2b,c). Thus, manipulating similarity can be an

effective way to produce a long-lasting reduction of the

conditioned response (the question of whether the mem-

ory was truly erased is fraught with difficulty; see [24]).

Interestingly, similar effects of gradual change have been

reported in motor [25–27] and visual [28–30,10] learning

in humans.

Understanding compound generalization
So far we have been considering only the possibility of

one latent cause per trial or per unit of experiment.

However, this is clearly an artificial limitation and the

true causal structure governing observed events can in-

volve multiple latent causes that are active at once.

Indeed, a rich area of research in animal conditioning

concerns the nature of interactions between multiple cues

that have independently been trained to signal rewards

[31–34].
Current Opinion in Behavioral Sciences 2015, 5:43–50 
A simple paradigm for studying such interactions is

known as compound generalization: Two cues (A and

B) are separately  paired with an outcome, and then

tested in compound (AB). Elemental models (e,g.,

[15,32]) assume that each cue possesses its own associ-

ation with the outcome, and these associations summate

when the cues are presented in compound. Therefore

the animal would expect two outcomes and accordingly

emit double the conditioned response. Configural mod-

els (e.g., [31,35]), on the other hand, assume that

associations are formed between whole cue configura-

tions and outcomes. Here the outcome prediction is a

weighted sum of outcome predictions for the training

configurations, where the weight depends on the simi-

larity between the training and test configurations. In

compound generalization, cues A and B both have a

similarity of 0.5 to the compound AB. This leads to

averaging of the responses to each individual cue, rather

than summation.
www.sciencedirect.com
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Despite extensive efforts to determine which of the

two theories is correct, compound generalization has

remained puzzling, sometimes acting in accordance with

elemental models (i.e., showing summation effects), and

sometimes in accordance with configural models (show-

ing averaging effects). In particular, a number of factors

influence the extent to which generalization appears

elemental or configural, including spatial contiguity, tem-

poral contiguity, and perceptual similarity between cues

[36–39]. Existing mechanistic models have failed to ac-

count for the diversity of these effects.

In a recent paper [13], we formalized the principles

underlying compound generalization using a variant of

the latent cause model that allows multiple latent causes

to be simultaneously active (see the description of the

‘Indian buffet process’ in Box 1). Here, as in the model of

extinction above, latent causes generate the cues as well

as the outcomes. Similarly to elemental models, in this

model we assumed that the total outcome is a linear
Figure 3
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combination of outcomes caused by each of the active

latent causes. Thus, the model predicts summation when

the animal infers that each cue resulted from a distinct

latent cause. However, because the latent causes —

rather than cues — are combined to make predictions,

the model does not predict a summation effect in cases in

which the animal infers that both cues were generated by

one latent cause.

How does the animal decide whether the two cues

resulted from one or from two latent causes? Building

on earlier theories of inductive generalization [40,41], the

model assumes that each latent cause is associated with a

region of stimulus space (termed a ‘consequential re-

gion’), from which cues are drawn uniformly when the

latent cause is active (Figure 3a). Importantly, different

cues can be drawn from a single consequential region

when only one cause is active, or from different conse-

quential regions if several latent causes are active. When

inferring whether two observed cues are more likely a
R 

R 

? 

R 

R 

? 

diffe rent modality              same modality 

B

0

0.5

1

1.5

2

ou
tc

om
e 

ex
pe

ct
at

io
n 

Simulation (Soto et al., 2014) 

A 
B 

AB 

diffe rent modality       same modality 

Current Opinion in Behavioral Sciences 

cause model used by Soto and colleagues [13] assumes that

lecting a latent cause (denoted by Z1 and Z2) and then drawing

ected latent cause. The perceived outcome (R) is a sum of the

 is active, otherwise zk = 0) plus Gaussian noise (e). (b) Pavlovian

d in compound. In the ‘different modality’ condition, cue A is a tone

ue B is another sound. (c) Experimental results from [36] and

d (both experimentally and in the model) when the cues (labeled A and
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result of one or two latent causes, a natural consequence

of Bayesian inference is the ‘size principle’ [41]: Small

consequential regions have higher posterior probability

than large consequential regions, all other things being

equal, because smaller regions place more probability

mass on the observed data. Thus, cues that are far apart

in stimulus space will tend to be assigned to different

latent causes, because small, localized consequential

regions are more likely than a single large region spanning

all the cues.

By assuming that spatial, temporal and perceptual factors

are dimensions of the stimulus space, we were able to

explain why compounds sometimes act elementally and

sometimes configurally. When cues occupy nearby posi-

tions in stimulus space, or lie on a line parallel to one of

the axes of the space, they can be explained by a single

consequential region (one latent cause), for instance, a

very narrow rectangle along the dimensional axis, which

has a very small volume. When cues are far apart in

stimulus space and do not lie parallel to axes of the space,

it is more likely that they belong to different consequen-

tial regions (multiple latent causes), because if they were

generated by one latent cause the consequential region

associated with that cause would have to have a large

volume, making the observed cues very unlikely. This

simple principle is sufficient to capture a wide range of

compound generalization phenomena [13]. An example is

illustrated in Figure 3, where compounds from the same

or different modalities are compared. When the cues are
Figure 4
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Two generative processes for latent causes. (a) In the Chinese

restaurant process, a single latent cause generates each observed

datapoint. Here each latent cause is associated with a ‘table’ and

datapoints are associated with ‘customers’ (colored squares, labeled

by letters). Customers are probabilistically seated at tables, indicating

their latent cause assignment. Another representation of the seating

arrangement is shown on the right: Shaded cells indicate that a

customer is seated at a particular table. (b) In the Indian buffet

process, multiple latent causes generate the different observations

that comprise each datapoint. Here each latent cause is associated

with a ‘dish,’ and customers can sample multiple dishes.
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from different modalities (far apart in stimulus space), the

conditioned response shows a summation effect, but this

effect disappears when the cues are from the same

modality [36], consistent with the model’s predictions.

Conclusions
The problem of state space discovery in reinforcement

learning has, until recently, been neglected by compu-

tational theories. This picture is now rapidly changing,

with new models and new data to elucidate the princi-

ples governing state discovery. We have reviewed re-

cent developments that illustrate the richness of these

principles.

While we have focused on Pavlovian conditioning, the

same principles of state discovery, and structure learning

more generally, have been invoked across numerous

cognitive domains [42–45,18,20,10,46��,47�]. For exam-

ple, the latent cause framework provides insight into the

conditions under which old memories are updated and

new memories are formed [10]. Similarly, the process of

forming and updating memories can be used to under-

stand the unsupervised discovery of visual categories

[18]. These applications suggest that structure learning

may function as a core computational system that is

shared across domains, with the hippocampus and orbi-

tofrontal cortex potentially playing a central role

[48,8,10,49,50].

While it is still unclear how structure learning is imple-

mented neurally, the available data suggest that the

hippocampus plays an important role in discovering latent

causes, and in structure learning more generally [51]. For

example, lesions of the hippocampus impair an animal’s

ability to distinguish between different contexts, result-

ing in reduced fear recovery following Pavlovian extinc-

tion (see [52] for a review). Some of these effects of

hippocampal lesions can be captured by forcing the latent

cause model to assign all observations to a single latent

cause [8]. Another example comes from work on spatially

tuned neurons in the hippocampus (‘place cells’), which

‘remap’ (i.e., reconfigure their spatial receptive fields)

when the context changes dramatically, possibly reflect-

ing a form of structure learning sensitive to the statistics of

environmental dynamics [48,10].

Wilson and colleagues [50] have suggested that the orbi-

tofrontal cortex is crucial for representing rich structure in

learning tasks. Animals with an orbitofrontal lesion per-

form a task as though they are using the same reinforce-

ment learning algorithms as non-lesioned animals, but

operating on an impoverished representation of the task

structure — i.e., a representation lacking latent causes

[49]. We speculate that the orbitofrontal cortex may be

the repository for consolidated representations of the

causal structure of a task, initially acquired by the hippo-

campus.
www.sciencedirect.com
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Finally, Crossley and colleagues [53] have suggested that

tonically active cholinergic interneurons in the striatum

act as gates on procedural learning, possibly functioning

as a mechanism by which inferences about latent causes

modulate reinforcement learning in the basal ganglia.

This idea is consistent with recent rodent experiments

showing that disruption of cholinergic signaling in the

striatum interferes with adaptation to changes in action-

outcome contingencies [54��], an effect that has been

interpreted in terms of latent causal inference [55]. Future

work will hopefully reveal a deeper understanding of the

interplay between these brain regions and the underlying

circuit mechanisms that implement structure learning.
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